skip to main content


Search for: All records

Creators/Authors contains: "Zarch, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While many efforts have begun to increase the diversity of learners in computing and engineering fields, more inclusive approaches are needed to support learners with intersectional identities across gender, race, ethnicity, and ability. A group of 15 experts across a range of computing, engineering, and data-based disciplines joined experts from education and the social sciences to build a plan for intersectional policy, practices, and research in broadening participation in computing and engineering (BPC/BPE) efforts that is inclusive of gender identity. This paper presents findings from the workshop including near and long term agenda items for intersectional research about the inclusion of gender identity in the computing and engineering education research communities; recommendations for advancing collective understanding of and ability to implement principles of intersectionality in future work and; and highlights from existing work, researchers, and thought leaders on the inclusion of gender identity in BPC/BPE initiatives that inform this research agenda. In this report we’ll discuss the origin of the workshop idea, the experience of pulling together the workshop and lessons learned around implementing it, and finally we’ll report about the outputs and emerging outcomes of the workshop experience. This workshop report will contribute to fostering a space where gender expansive work is valued and valuable for those doing, receiving, and being represented by this work. It will also offer readers the opportunity to conceptualize how to expand and refine the inclusion of gender identity as part of their current and future BPC/BPE initiatives. We end with an explicit call for more gender expansive and gender liberationist work be undertaken through the auspices of ASEE. 
    more » « less
  2. Abstract: It is critical that we understand the systemic issues that have led to the historic marginalization of students in K-12 computer science education (CSEd) to the degree that we can design equity-centered policy and actions. Investments in CSEd have expanded rapidly through local interventions and state policy, however the data required to understand the impact of this expansion continues to lag or be insufficient. This paper takes a retrospective look at efforts to measure broadening participation in computing (BPC) approaches and identifies equity-explicit strategies moving forward, Over the last two decades, efforts to measure BPC have evolved from ad-hoc grassroots methods to more systematic and sustainable approaches. BPC, often interpreted as access and participation, does not address the inherent inequality embedded in the K-12 American public education system. Current data efforts often focus on the student, obscuring the systems and practices that contribute to inequities in CSEd. This paper concludes with recommendations for prioritizing data utilization and the development of holistic data systems that are woven into strategic plans that lead to systems change and equitable student access, participation and experiences in computing. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Research literature has documented how computer science (CS) teachers are often isolated in their schools and are less likely to collaborate as compared to other subject area teachers. This parallels an emerging body of literature around how teachers leverage professional development opportunities to engage in their practice. However, limited research has empirically studied how professional development opportunities lead to increases in teacher empowerment and spur broadening participation in CS efforts. In this study, we report on a networked improvement community (NIC) focused on connecting CS teachers to their peers, national experts, professional development providers, and researchers to impact teaching practices and guide implementation of policies that lead to increased female participation in CS courses. We report on the role of the NIC to support teachers as school and community change agents. Drawing from focus groups with participating teachers (n=20), we report on a two-year process of learning that involved identifying root causes for female underrepresentation and conducting teacher-led interventions within their classrooms and schools. We detail how a NIC offers a novel approach to facilitate collaboration and empower teachers to implement changes that can impact girls in computer science. Initial data indicate that the collaborative nature of the NIC and its teacher-directed approach to change led to a newfound sense of ownership and empowerment in NIC teachers for addressing the challenge of increasing female participation in CS. 
    more » « less
  5. Facilitating the development of a common framework for monitoring progress in K-12 computer science (CS) education and advocacy with an emphasis on broadening participation is the key to constructing strong CS education policy. Based on a project that brought together leadership teams from six states, a framework for measuring broadening participation in computing (BPC) and setting the foundation for national scaling was developed. Built around a collaboration of leaders representing experience in data gathering, data analysis, data reporting, and data utilization, this project applied the tenets of collective impact to address the challenge of consistently measuring progress toward BPC across state contexts. By establishing a common agenda, including mutually agreed upon definitions of computer science education and broadening participation, these leaders guided the selection of metrics. This led to the development of shared measurement systems and built a deeper understanding of state data systems across the participating states. This phase resulted in common goals and a monitoring system to measure BPC efforts that could inform state policy efforts. Mutually reinforcing activities included the development and sharing of tools, allowing stakeholders to quickly and accurately analyze and disseminate data that drives BPC measurement and policy work. Guided by backbone support to coordinate the work and continuous communication, meaningful participation of all stakeholders was central to the project. Making the case for CS education policy via common metrics and measuring progress across a region stands to impact BPC policy efforts across the United States. The common framework developed in this project serves as a call to action, especially for state and local education agencies committed to increasing diversity in computer science pathways.

     
    more » « less
  6. null (Ed.)
    Computer Science (CS) education advocates have worked within states to change K-12 education policies in order to broaden participation in computing (BPC) and grow CS as a content discipline within K-12 classrooms. Statewide summits, which convene a variety of stakeholders across levels of education, are pivotal events that build momentum for change. Maryland has utilized annual summits to leverage statewide advocacy in order to continue CS K-12 education growth. Summit evaluations provided valuable data to strategically plan additional events and advocacy activities. Data from the past four annual summits are analyzed and discussed. State advocacy outcomes include: 1) increased statewide CS education awareness, 2) the establishment of the Maryland Center for Computing Education, 3) seven million dollars of state funds dedicated to K-12 CS education professional development and pre-service teacher preparation program reform, and 4) the enactment of Securing the Future: Computer Science for All law. This law requires all Maryland public high schools to offer CS, make efforts at the middle and elementary levels to include CS, and broaden participation in computing in K-12 classrooms. Valuable insights are provided for other states to consider as they build BPC advocacy efforts through statewide summits in their own states. 
    more » « less
  7. null (Ed.)
    This experience report provides insights into the unintended consequences of five states efforts to make computer science education policy changes in an effort to broaden participation in computing (BPC). At the 2019 Expanding Computing Education Pathways (ECEP) meeting, several member-states were invited to share about the unintended consequences of computer science education policy reform in their states. Due to the nature of policy making and implementation, marginalized communities including students, practitioners, and under resourced schools are most impacted by education policy reform efforts. As computer science education gains traction as an education policy priority in states and districts, it is important to learn the lessons of past education policy failures and successes, specifically how these policies could trigger unintended consequences that will impact the broadening of participation within K-12 computer science education. The examples put forth by the states include unintended consequences of policies such as making CS count as a graduation requirement, defining computer science, developing CS standards, and teacher certification. These experienced unintended consequences may be relevant to other states seeking to make CS policy changes. This paper concludes with a reflection on the ECEP model as a tool for mitigating these unintended consequences as part of the BPC efforts. 
    more » « less
  8. null (Ed.)
    This experience report details the lessons learned while launching a Networked Improvement Community (NIC) with 23 teachers in Texas as part of the NSF-funded Accelerating Women’s Success and Mastery in Computer Science (AWSM in CS) project. Conceived to address the persistent gender inequities in computer science (CS) education, the NIC was designed to bring together researchers and practitioners to collaboratively develop and implement solutions with the goal of increasing female participation in CS courses. This experience report explores the lessons learned, such as the importance of building a sense of community, trust, and collaboration, before jumping into problem solving as a NIC. Additionally, the report addresses considerations for sustaining the NIC virtually given the logistical constraints placed on teacher collaboration during the school year. 
    more » « less
  9. Teacher professional development (PD) is a key factor in enabling teachers to develop mindsets and skills that positively impact students. It is also a key step in building capacity for computer science (CS) education in K-12 schools. Successful CS PD meets primary learning goals and enable teachers to grow their self-efficacy, asset and equity mindset, and interest in teaching CS. As part of a larger study, we conducted a secondary analysis of CS PD evaluation instruments (). We found that instruments across providers were highly dissimilar with limited data collected for measures related to teacher learning, which has implications for future K-12 CS education. Likewise, the instruments were limited in being connected to student learning and academic growth. As a way to enable PD providers to construct measures that align with known impacting factors, we offer recommendations for collecting demographic data and measuring program satisfaction, content knowledge, pedagogical content knowledge, growth and equity mindset, and self-efficacy. We also highlight questions for PD providers to consider when constructing their evaluation, including reflecting community values, the goals of the PD, and how the data collected will be used to continually improve CS programs. 
    more » « less